c) Distributive Equivalence:
(∼S^(^())(∼BvvD))/(Avv[∼M^(^())(C->D)])
d) Conditional Equivalence:
∼A->∼(B^(^())C)
Pvv(Q->R)
∼(∼MvvN)
e) Contrapositive Equivalence:
∼P->∼(Q^(^())R)
A->∼(MvvC)
Use the Conditional and DeMorgan's Equivalencies to change the following statements: a)
(A->B)->∼(R->S)
b)
(MvvN)->R
c)
Q->(P->M)
ARGUMENTS AND PROOFS Definition of an Argument - Definition of a Valid Argument - Definition of an Invalid Argument - Determining Valiability: a) Using Truth Tables b) Formal Proof Solve the following by constructing the truth table (determine whether valid or invalid): Solve the following by formal proof (verify by an indirect approach first):